

Product Features

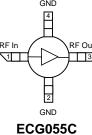
- DC 6 GHz
- +18 dBm P1dB at 1 GHz
- +34 dBm OIP3 at 1 GHz
- 20.5 dB Gain at 1 GHz
- 3.4 dB Noise Figure at 2 GHz
- Lead-free / green SOT-86 pkg
- Internally matched to 50Ω

Applications

- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless

Specifications⁽¹⁾

Parameter	Units	Min	Тур	Max
Operational Bandwidth	MHz	DC		6000
Test Frequency	MHz		1000	
Gain	dB		19.7	
Output P1dB	dBm		+18	
Output IP3 ⁽²⁾	dBm		+34	
Test Frequency	MHz		2000	
Gain	dB	17	18	19
Input Return Loss	dB		22	
Output Return Loss	dB		21	
Output P1dB	dBm		+18	
Output IP3 ⁽²⁾	dBm		+32	
Noise Figure	dB		3.4	
Device Voltage	V	4.2	4.8	5.3
Device Current	mA		65	


1. Test conditions unless otherwise noted: 25° C, Supply Voltage = +6 V, Rbias = 18Ω , 50Ω system. 2. 30IP measured with two tones at an output power of +4 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.

Product Description

The ECG055C is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 1000 MHz, the ECG055C typically provides 19.7 dB of gain, +34 dBm Output IP3, and +18 dBm P1dB.

The ECG055C consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation. The device is ideal for wireless applications and is available in low-cost, surface-mountable plastic leadfree/green/RoHS-compliant SOT-86 packages. A SOT-89 version is also available as the ECG055B. All devices are 100% RF and DC tested.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, and W-CDMA. In addition, the ECG055C will work for other various applications within the DC to 6 GHz frequency range such as CATV and fixed wireless.

Functional Diagram

GND 4 RF In RF Out 11 3 2 GND ECG055C-G

Typical Performance⁽³⁾

Parameter	Units		Тур	ical	
Frequency	MHz	500	900	1900	2140
S21	dB	20.1	19.7	18.2	17.9
S11	dB	35	26	22	22
S22	dB	23	22	21	21
Output P1dB	dBm	+18	+18.1	+18.2	+17.8
Output IP3	dBm	+34	+34	+32	+30.5
Noise Figure	dB	3.6	3.4	3.4	3.4

3. Test conditions: $T = 25^{\circ}$ C, Supply Voltage = +6 V, Device Voltage = +5.0V, $R_{bias} = 18 \Omega$, 50 Ω System.

Absolute Maximum Rating

Parameter	Rating	
Operating Case Temperature	-40 to +85 °C	
Storage Temperature	-65 to +150 °C	
RF Input Power (continuous)	+12 dBm	
Device Current	150 mA	
Junction Temperature	+250 °C	

Operation of this device above any of these parameters may cause permanent damage

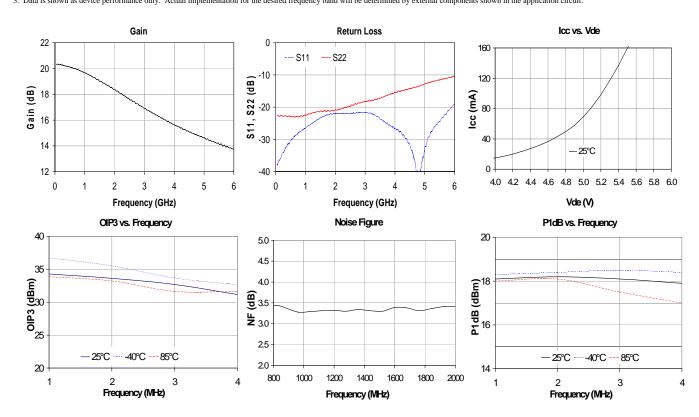
Ordering Information

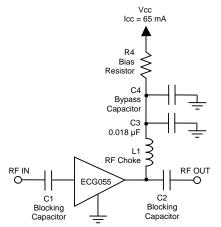
Part No.	Description
ECG055C*	InGaP HBT Gain Block (lead-tin SOT-86 package)
ECG055C-G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-86 package)
ECG055C-PCB	700 –2400 MHz Fully Assembled Eval. Board
* This peaks as is hains phase	ad out in forces of the secon nealings type which is healwood compatible for

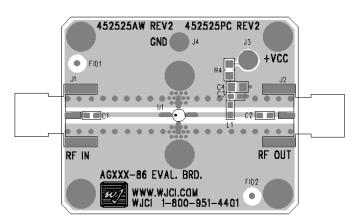
This package is being phased out in favor of the green package type which is backward compatible for existing designs

Specifications and information are subject to change without notice

GND RF In RF Out 3




Typical Device RF Performance Supply Bias = +6 V, R_{bias} = 18 Ω , I_{cc} = 65 mA


Frequency	MHz	100	500	900	1900	2140	2400	3500	5800
S21	dB	20.3	20.1	19.7	18.2	17.9	17.6	16.1	13.7
S11	dB	35	35	26	22	22	22	24	21
S22	dB	23	23	22	21	21	20	17	11
Output P1dB	dBm	+18.2	+18	+18.1	+18.2	+17.8	+17.8	+17.2	
Output IP3	dBm	+33	+33.5	+34.5	+33.5	+32.9	+32		
Noise Figure	dB	3.4	3.6	3.4	3.4	3.4	3.8		

Test conditions: T = 25° C, Supply Voltage = +6 V, Device Voltage = 4.8 V, Rbias = 18 Ω, Icc = 65 mA typical, 50 Ω System.
3OIP measured with two tones at an output power of +4 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.
Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by external components shown in the application circuit.

Recommended Application Circuit

Recommended Component Values

Reference	Frequency (MHz)							
Designator	50	500	900	1900	2200	2500	3500	
L1	820 nH	220 nH	68 nH	27 nH	22 nH	18 nH	15 nH	
C1, C2, C4	.018 µF	1000 pF	100 pF	68 pF	68 pF	56 pF	39 pF	

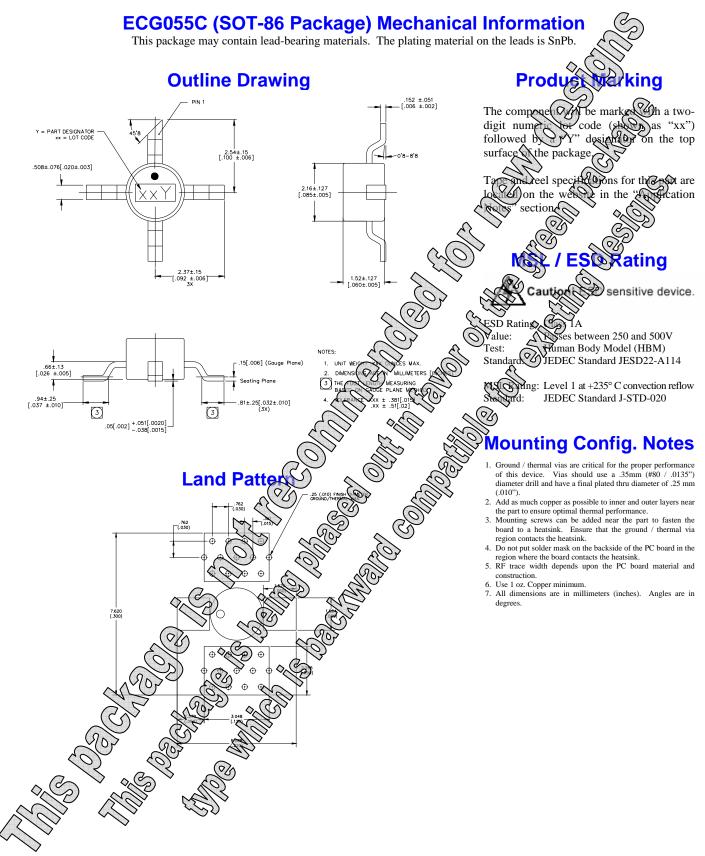
1. The proper values for the components are dependent upon the intended frequency of operation.

2. The following values are contained on the evaluation board to achieve optimal broadband performance:

Ref. Desig.	Value / Type	Size
L1	39 nH wirewound inductor	0603
C1, C2	56 pF chip capacitor	0603
C3	0.018 µF chip capacitor	0603
C4	Do Not Place	
R4	18 Ω 1% tolerance	0805

Recommended Bias Resistor Values

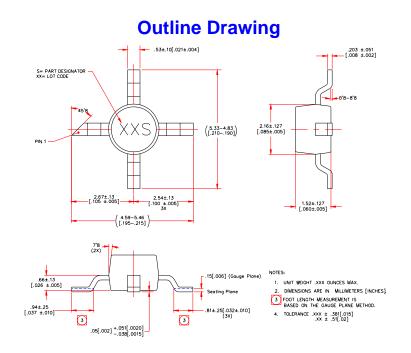
	Supply Voltage	R1 value	Size
ĺ	6 V	18.5 ohms	0805
	7 V	33.8 ohms	1210
	8 V	49 ohms	1210
	9 V	65 ohms	2010
	10 V	80 ohms	2010
	12 V	111 ohms	2512

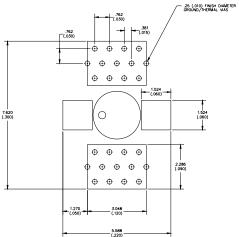

The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +6 V. A 1% tolerance resistor is recommended.

Typical Device S-Parameters – ECG055C / ECG055C-G

S-Parameters (V	$V_{\text{device}} = +4.8 \text{ V},$	I _{CC} = 65 mA, T	= 25°C, calibra	ated to device le	ads)			
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-38.17	9.34	20.30	178.31	-22.39	0.12	-22.58	-1.41
500	-30.35	38.64	20.11	161.09	-22.33	0.74	-23.00	-29.41
1000	-26.51	30.55	19.67	143.04	-22.23	1.87	-22.48	-50.33
1500	-23.32	16.54	19.00	126.43	-22.09	2.57	-21.21	-77.23
2000	-22.01	8.06	18.39	111.18	-21.81	3.37	-20.79	-101.82
2500	-21.87	-3.80	17.62	96.71	-21.55	3.41	-19.71	-119.95
3000	-21.62	-11.61	16.91	83.83	-21.16	3.82	-18.27	-141.35
3500	-23.63	-13.22	16.27	71.31	-20.78	3.21	-17.28	-155.62
4000	-26.77	-23.25	15.65	59.48	-20.29	2.65	-15.32	-170.83
4500	-31.76	-20.76	15.09	47.94	-19.79	1.21	-14.24	174.50
5000	-32.57	122.50	14.65	36.34	-19.25	-0.79	-12.75	163.59
5500	-24.49	133.61	14.16	24.39	-18.78	-3.46	-11.56	150.73
6000	-18.97	125.72	13.73	13.11	-18.29	-6.40	-10.39	140.55

Device S-parameters are available for download off of the website at: http://www.wj.com

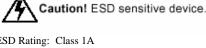




ECG055C-G (Green / Lead-free Sot-86 Package) Mechanical Information

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and leaded (maximum 245°C reflow temperature) soldering processes. The plating material on the pins is annealed matte tin over copper.

Land Pattern



Product Marking

The component will be marked with a twodigit numeric lot code (shown as "XX") followed by an "S" designator on the top surface of the package.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

MSL / ESD Rating

ESD Rating:	Class IA
Value:	Passes between 250 and 500V
Test:	Human Body Model (HBM)
Standard:	JEDEC Standard JESD22-A114

MSL Rating: Level 3 at +260° C convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in degrees.